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Abstract. With decreasing temperature NiBr, undergoes successively a second-order para- 
antiferromagnetic (TN = 52 * 1 K) and then a first-order antiferrc+helimagnetic (Tic = 
22.8 K) phase transition. In both ordered phases, the individual moments lie in a plane 
perpendicular to the crystal c axis. Using a model described in a previous paper, we interpret 
the variation of T,, when the magnetic field is applied in the plane of the spins. This study 
allows us also to confirm the values of some model parameters. However, in the presence of 
a strong magnetic field the model must be extended to take into account the strains created 
by the field. 

1. Introduction 

Anhydrous nickel dibromide, NiBr2, has a hexagonal layer structure of the CdC12 type 
with a high symmetry axis, c axis. When the temperature decreases the compound 
displays successively a second-order para (p)-antiferromagnetic (AF) phase transition 
(TN = 52 ? 1 K, Day et a1 1976), and then a first-order antiferro-helimagnetic (HX) 
transition at Tic = 22.8 K (Adam et a1 1980a, Day and Ziebeck 1980). In both magnetic 
structures the individual spin directions are orthoganal to the c axis. 

In order to investigate the first-order transition and the low-temperature magnetic 
phase, many experimental studies have been carried out by varying one or more of the 
follov. ing parameters: temperature T ,  uniform magnetic field h and hydrostatic pressure 
(Adam et a1 1980a, Day and Vettier 1981, Adam et a1 1981, Regnault et a1 1982, Day et 
a1 1982, Pollard et a1 1982, Katsumata et a1 1983, Day et a1 1984, Tuchendler and 
Katsumata 1985). 

In a previous paper (Bettachy and Nasser 1989, referred to as Pl) ,  we have presented 
a model which interprets the first-order (AF)-(HX) phase transition in zero applied field 
at atmospheric pressure. In this article we use this model to interpret the effects of an 
applied magnetic field on this phase transition, the field being applied within the easy 
magnetisation plane (in-plane magnetic field). One of the topics of this article is the 
study of the magnetic field-temperature phase diagram. Another goal is to obtain a new 
determination for the values of some model parameters. Comparing these new values 
with the corresponding values obtained by another method (Pl)  allows the model to be 
checked and its limits of validity to be defined. 
I Visiting professor at ENS Takaddoum from October 1983 to October 1986 
I/ On leave from ENS Takaddoum, BP 5118 Rabat, Morocco. 
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Figure 1. Crystal and AF structure of NiBr,. a,  band c are 
the crystalline axes of the hexagonal cell containing 3 
formula units: c is the high-symmetry axis (3). Open 
circles, nickel ions; bromide ions are not represented. 
The  structure consistsof ferromagneticsheets coupled 
antiferromagnetically (sequence + - + - along the c 
axis), the spins lie within the sheets (easy magnetisation 
plane). TN = 52.1 K.  

X1 

In the following section we give a summary of the experimental data obtained in 
NiBrz below TN at atmospheric pressure in the presence of an applied field. In 9 3 
we give a theoretical interpretation of these data. The last section is devoted to the 
conclusion. 

2. In-plane magnetic field: experimental phase diagram at atmospheric pressure 

The primitive nuclear cell of NiBrz is rhombohedral with one molecule per unit cell. In 
this study it is more convenient to use a hexagonal cell with 3 formula units per unit cell. 
This hexagonal cell and the crystalline axes a, b and c are illustrated in figure 1. The 
following wavevectors q are labelled in the reciprocal axes axr  b" and c* .  

The AF structure of NiBr, is similar to that of NiC12. It consists of ferromagnetic 
planes which are coupled antiferromagnetically as shown in figure 1 (Day et a1 1976). 
The wavevector of this structure is (0, 0, $). Below T,, spins are rotated in the hexagonal 
planes giving an Hxstructure with a wavevector (7 ,  5 ,  g). The Hxstructure of a hexagonal 
sheet is illustrated in figure 2, two consecutive hexagonal sheets being antiferro- 
magnetically oriented. Both magnetic structures are close in the sense that the parameter 
t which is zero in the AFphase takes the value 8.96 k 0.33 x at TI, and then increases 
with decreasing temperature becoming 0.027 at 4.2 K. The thermal variations of the 
parameters z and m2,  the square of the magnetisation per ion, have been measured 
between TN and 4.2 K (Adam et al1980a). 

An in-plane applied magnetic field reduces the values of the transition temperature 
TIC. The magnetic field-temperature phase diagram has been determined at different 
pressure values (Adam et a1 1981). At  atmospheric pressure, T,, is 22.4 k 0.5 and 
20.8 k 0.5 K when the magnetic field is respectively 0.5 and 1.0 T. The extrapolation at 
zero magnetic field of the transition line gives the value 23.8 '-+ 0.5 K,  which is slightly 
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Figure 2. HX structure of NiBr, from Regnault et al (1982). Below T,, = 22.8 K,  each 
ferromagnetic sheet becomes helimagnetic as shown in the figure. The sequence + - + - 
along the c axis is maintained. The helimagnetic angle rp is related to the parameter r by 
rp = 2 m  and varies with the temperature. At  4.2 K the angle rp is close to 10". 

different from the value 22.8 K directly obtained by Adam et a1 (1980a) for T,, in zero 
applied field. At 4.2 K,  a 2.74 2 0.02 T applied field value induces a first-order HX-AF 
phase transition. 

3. Theoretical interpretation 

We use the Hamiltonian X t :  
X t  = X o  + XI 

where X I  is considered as a perturbation to X o .  The principal Hamiltonian X o  contains 
the exchange interactions, while the perturbing term XI contains in-plane anisotropy, 
dipolar and Zeeman interactions. 

All the above interactions, except the Zeeman term, have been studied in a previous 
article (Pl) .  Here we only give explanations for the Zeeman interaction. 

3.1. Study of the principal Hamiltonian X,, 
We take for X o  the expression 

X o  = - 2jRR'SR ' S R '  
(R .R ' I  

where SR is the spin operator at the site R ( S  = 1); Z ( R , R , )  means the sum over pairs of 
spins. Concerning the exchange interactionsjRRt, we take into account the first-, second- 
and third-neighbour in-plane exchange integrals j l ,  j ,  and j3 respectively together with 
the interplane exchange integral j 4  (Regnault et a1 1982, P l ) .  

In our model, the exchange parameters are taken to be linear functions of the 
components c1, E ,  and of the crystal strain tensor defined in the orthogonal frame 
{Oxi, i = 1,2 ,3}  such that Ox3 is parallel to the c axis and Ox2 is contained in the mirror 
plane m of the Ni2+ ion point group (figure 1). We insist on the fact that, in our model, 
the only strains that are considered are those related to the magneto-elastic coupling 
(the background thermal dilatation is neglected). 
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By symmetry arguments we have 

j i  = jp  + (dji/ael)(el + e 2 )  + ( d j i / d e 3 ) e 3  (i = 1 to 4). (3) 
By symmetry, we always have el  = e2; so we never mention the strain component e2. 
The parameters jp, d j i / d e l  and dji/dE3 are constant. The parameter j o  corresponds to the 
value of the exchange integral ji in the P phase. 

We look for solutions of the form 

( S , )  = m exp(iq * R)u  

where (S , )  is the thermal value of the spin S R  at thermodynamic equilibrium, U is a 
constant unit vector contained in the spin rotating plane, q is a wavevector of the form 
(z, z, k )  and m is a scalar parameter which does not depend on the site-the absolute 
value of m is the magnetisation per site ( 1  m 1 s 1). 

To obtain the values of the parameters m, q, e l  and e3 we have to solve a system of 
equations composed by the self-consistent mean field equation and by the equations 
obtained by minimising a variational free energy F = P( T ,  z, k ,  el ,  e3)  which contains 
the magnetic and the elastic free energy of the system. 

The minimisation of the Fourier transform of the exchange interactions leads to the 
two following solutions (Pl ,  Regnault et a1 1982): 

q n  = (0, 0 , 9  

qp = (z, 2,4) 

and 

with 

COS 2 n ~  = 1 - ( 2 ~ 4 ~ / 2  = J , / J ~  (4) 
where the parameters J 1  and J 2  are linear combinations of the exchange integrals, and 
are defined by 

J 1  = j l  - 15j2 - 32j3 - j4 

J2 = - 2(j1 + 12j2 + 22j3). 

In the same way as the exchange integrals ji, the linear combinations J1 and J2 are linear 
functions of the strain components el, e2 and e3. So we have 

J i  = Jp + (dJi/del)(el + e 2 )  + ( d J i / a e 3 ) e 3  (i = 1 and 2). ( 5 )  
The wavevectors qa and qp describe respectively the AF structure (here also called LY 

solution) and the HX structure (p  solution). Both solutions have been studied in our 
previous paper (Pl) .  Here we only give the results which are necessary for the following. 

solution does not exist when the ratio J1/J2 is 
negative or is bigger than unity. The fundamental hypothesis of our model is 

The relation (4) shows that the 

J: /J ;  > 1. 

With this hypothesis, the a solution exists between T N ,  the Nee1 temperature, and 0 K,  
while the /3 solution exists only below a threshold temperature value T, which depends 
on the ratio J p / J ; ,  with T, s T,. At T,, J1 = J 2  and both solutions are the same. 

By fitting the thermal variations of the parameters z and m2, the square of the 
magnetisation per site (Adam et a1 1980a), we have obtained the following values: 
mf = 0.706 5 0.001 and T, = 23.9 * 0.4 K (Pl) ,  where mf is the value of m2 at T,. 
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m2 I \ 

x Figure 3. Thermal variation of m 2  in the HX phase 
and for the two lowest temperature values of the 
AFphase: 0 is the reduced temperature 0 = T/T,. 
The crosses represent experimental data in zero 
applied field. The coordinates of the open circle S 
are (m:, Os) .  Thefullcurvecorresponds toalinear 
interpolation between data. This figure displays 
the slope discontinuity of the curve "(0) at S .  
The inset shows the magnetisation discontinuity 
at the transition temperature the broken curve 
between and Os cannot be observed. The dif- 
ference Os - depends on the sum of the in- 

0.2 0.4 0.6 plane anisotropy, the dipolar and the Zeeman o,611,-- 9 : T / T ,  interactions. 

' .. ~ _ X W  
, ,  

-4: 8, 

For the following we introduce the reduced temperature 8 = T/T,, assuming no 
error on the denominator. We also suppose that T,, mf and the related parameters have 
no associated uncertainties. So we have mf = 0.706, B ,  = (m:)'/* = 0.840, x, = 1.934, 
BS = 0.170 and 8, = 0.460. The value x ,  is obtained by solving the equation B(x,) = B,, 
where B is the Brillouin function for a spin S = 1; the value of B:  is the value of the 
Brillouin function derivative at x,; and 8, is the value of the threshold reduced 
temperature. 

Figure 3 displays the thermal variation of the parameter m2. The crosses correspond 
to experimental data (Adam et a1 1980a). The point W belongs to the AF phase, and the 
point R to the HX phase. The coordinates of the point S are mi and 8,. We call the point 
S the threshold point. As predicted by the model, the curve m2(8)  displays a slope 
discontinuity at the point S.  

Below 8, and near e,, F, - Fp,  the difference of the a and /3 free energies related to 
Xo is given by (Pl): 

The parameter K, is proportional to the slope discontinuity of the magnetisation at 8,. 
We obtain for K, a central value close to 3.5 x 10l1 Hz. 

F ,  - Fp = hKS(8 - (e c e,). (6) 

At 0 K, F, - Fp is given by (Pl): 
( T =  OK) (7) F ,  - Fp = hKoq 2 

where q is the value of the helimagnetic angle at 0 K. This value is close to qo, the value 
at 4.2 K. From the data obtained by Adam et a1 (1980a) we deduce q&'2 = 0.0144 ? 
0.001. The parameter KO is the sum of three terms, the main one being proportional 
to the magnetisation slope discontinuity. We obtain for KO a central value close to 
5.3 X 1012Hz. 

We now have to take into account the perturbing term Xl, 

3.2. Total free energies difference for both F,, - Ftp 

Calling F,, and Ftp the free energies related to the total Hamiltonian X,  for the respective 
solutions a and p, we have 

where the free energy U is obtained by considering 2, as a perturbation compared to 
X(l . 

F,, - F,p = F ,  - Fp - U (8) 
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For X I  we take 

a f 1  = a f a  + + X Z  
where Xa is a one-ion in-plane anisotropy interaction coming from the crystalline field 
acting on the Ni2+ ion, a f d  is the dipolar interaction and Xz is the Zeeman interaction. 

We deduce U,, u d  and U,  in the following way: 

- ua = (xa)oe - ( X a ) ~ p  

- U d  = ( a f d ) O a  - (xd)Op 

- U z  = - $(xe - xp)h2 = - Uzh2 

where the mean values, denoted by angular brackets, are made with the unperturbed E 
and /3 solutions, h2 is the square of the norm of the in-plane applied field h,  and xa and 
xp are the magnetic susceptibilities for the respective solutions E and /?. For U we then 
have the relation 

U =  U ,  -k Ud + UZ.  

We neglect the strains related to the interactions contained in Xl. In our previous paper 
(Pl) we have studied U, and U,. 

3.2.1. In-plane anisotropy contribution U,. For this contribution we have 

U,(O) = U,(B;)  = 0.1756 cos 2qj 

U,(O K) = 0.256 cos 211/. 

(near e,) 

The parameter 6 ,  which is the strength of the anisotropy interaction, has a positive sign. 
The angle qj  is the angle between the spin direction in the AF structure U, and the easy 
axis related to the in-plane anisotropy interaction. In a zero applied field I) = 0; but in 
the presence of a sufficiently strong in-plane applied field the AF spin direction becomes 
orthogonal to the applied field direction, and then it depends on the field direction. 

3.2.2. Dipolar contribution U,. In a previous article, we calculated the dipolar con- 
tribution at different temperatures. Calling U,( T )  the dipolar contribution to the tem- 
perature value T ,  we established that ud(T,) = 0, u d  (22.8) = 6.78 k 0.17, u d  (22.4) = 
9.47 k 0.24, u d  (20.8) = 19.78 t 0.51 and (4.2) = 697 t 166 MHz. The dipolar con- 
tribution depends on the temperature via the helimagnetic angle q . 

3.2.3. Zeeman contribution U,. We have to calculate the magnetic susceptibilities of 
the AF and HX structures xe and xa respectively. For xa we limit the study to the 
antiferromagnetic perpendicular susceptibility xI. 

For xu and xp we have the following expressions: 

X a  = - k c ~ P B ) * / ~ 3  (9) 
and 
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In the above relations, T(q) is the Fourier transform of the exchange interactions. We 
use q, for X, and qp for xp; for the a solution T(0) = :(2q,); p B  is the Bohr magneton; g, 
and gp are the spectroscopic factors for the a and the /3 solutions respectively; the 
parameter x ,  which is the Brillouin function argument, depends on the solution: we use 
x ,  for X, and xp for xp; B'(x)  is the derivative with respect to x of the Brillouin function 
for S = 1. 

We can show that sl, s2 and s3 verify the following relations: 

(11) 1. S1 = 24j4 + 2(J3 + J4) - S2 + gpB(dm/dh)-' 

s2 = 4(J4 + 8j4)q2/2 

s3 = 24j4 + U4(q2 /2 )  - s2 

In the relations (11), the parametersJ3 and J 4  are linear combinations of the exchange 
integrals, and they are temperature dependent. 

For g, we use the value 2.27 * 0.02 over the temperature range from Os to 0 K; for 
gp we use the value 2.27 k 0.02 at Os and near Os,  and the value 2.06 i 0.02 at 4.2 K 
(Adam et a1 1980b, 1985, P1). 

We calculate X, at 4.2 K by using, in relations (9) and (11), the value zero for q2 and 
forj,its experimental value at 4.2 K, 2j4 = 0.042(5) THz (Day eta1 1984). We obtain for 
X, at 4.2 K the value 20.039 * 2.739 Hz G-2. Neglecting the thermal variations of the 
parametersj, andg,, X, has this last value over the temperature range from 4.2 K to 8,. 

At low temperature the parameters gpB(am/dh)-' are very big: gpB(dm/ah)-' + 
for x + W .  So, from relation (10) we deduce for xp at 0 K the expression 

We use relation (12) for calculating the value of the parameterXp at 4.2 K. On replacing, 
in relations (12) and ( l l ) ,  q2 /2  by q i /2 ,  j 4  by its experimental value and J 4  by the value 
obtained by using the relation J4 = -4J2 q & / 2  with J 2  = 1.883 i- 0.171 THz (Pl) ,  we 
obtain for the ratio xpxil  the value 0.434 i 0.002 at 4.2 K. This value is different from 
the 0.58 mentioned by Regnault et a1 (1982). Using the calculated values obtained for 
X, and for the ratio xpx;', we obtain the value Uz (4.2) = 5.67 * 0.80 Hz G-2. 

x p  = - 4 ( g p p B ) 2 / s 3 .  (12) 

At O s ,  q is equal to zero, and from relations (10) and (11) we deduce the relation 

with 
= 24J4 + 2(J3 + - kT, (B i ) - '  

( ~ 3 ) ~  = 24j4 
where ( J 3  + J4), is the value at 8, of the parameters ( J 3  + J4). We can replace ( J 3  + J4), 
by kT,x,B;'. Using for j 4  the experimental value obtained at 4.2 K ,  at 6;  we obtain for 
the ratio xpx;* the value 0.61 i 0.01 and for Uz the value Uz(8;) = 3.91 i 0.63 Hz 
G-2. 

3.3. AF-HX phase transitions near 8, 

For the AF-HX phase transition which occurs near Os, the reduced transition temperature 
Oic is obtained by solving the following equation: 
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iK,(e,, - e,)’ - u(e,,) = 0. 
In azero applied field we have U = U, + U,, and 8,, = 0.439 k 0.002. Using the approxi- 
matevalue -0.1756 for U,(&) and the value ud (22.8) for U,(e,,) we obtain the relation 

iK,(e,, - 8,)’ - 0.1756 - ~ ~ ( 2 2 . 8 )  = 0. 
In a 0.5 T applied field we have U = U, + u d  + U z ,  and e,, = 0.431 2 0.01. Using 
U, = 0.1756  COS^^, ud = ud (22.4) and U ,  = U2(8;)h2  we obtain 

(14) 

iK , (8 , ,  - 8,)’ -0.1756 COS 2 q  - U ,  (22.4) - Uz(8; )h2  = 0. 

iK , (e , ,  - 8,)’ -0.1756 cos 2 q  - U d  (20.8) - o z ( 8 ; ) h 2  = 0 

(15a) 

(15b) 

In the same way, in a 1.0 T applied field we obtain 

with e,, = 0.4 2 0.0096. We suppose that the angle is the same in equations (15a) and 
(15b). For Os we have the value 0.460. 

From relations (15a) and (15b) we deduce for K ,  a positive mean value close to 
2.2 x 10l1 Hz, and for 0.1756 cos 2 q  a negative mean value close to -1.2 x lo7 Hz. 
Using this last value for K, in relation (14), we obtain for 0.1756 a positive mean value 
closeto4.6 X lo’. Fromthevaluesobtainedfor0.1756 andfor0.1756 cos 2 q ,  wededuce 
for 6 a positive mean value close to 2.6 X lo8 Hz and for cos 2 q  a negative mean value 
close to -0.25 corresponding to an angle q close to 52”. 

The negative value obtained for cos 2 q  means that, due to the applied field, the spin 
direction in the AF phase is not the anisotropy easy axis. So in the experimental study of 
Adam et a1 (1981) the anisotropy contribution does not favour the (AF) structure below 
8,. So, if we set h = 0 in the relations (15u) and (15b) we obtain for the total free energy 
difference, F,, - FtP, below and near 0, a positive value given by 

for 8 s 8,: 

So F,, - Ftp can be equal to zero only for 6 = e,, as then the dipolar and the anisotropy 
contributions are both equal to zero, which means that the HX phase appears for e,, = 
8,. Extrapolation of the experimental data for h = 0 in the (h ,  r )  phase diagram gives 
the temperature value 23.8 ? 0.5 K (Adam et a1 1981). In their paper, the authors 
consider that this value is in agreement with the value 22.8 K obtained for the tem- 
perature transition value by neutron diffraction (Adam et a1 1980a) in zero applied field. 
In our model both values, 22.8 and 23.8 k 0.5 K, correspond to two different notations: 
the first value corresponds to the actual phase transition temperature value for a zero 
applied field while the second one corresponds to the threshold temperature value 
T,, previously found equal to 23.9 k 0.4 (Pl) .  So the temperature value obtained by 
extrapolation at h = 0 in the phase diagram ( h ,  T )  corresponds to a measurement of the 
threshold temperature T, when cos 2 q  is negative. 

The value -lo* Hz found for 6, the in-plane anisotropy, is much smaller than the 
values obtained for the exchange integrals jl, j,, j ,  and j 4  and much smaller than the 
value obtained for the anisotropic interaction which maintains the spin direction within 
the (0, 0 , l )  planes (Day et a1 1984). Up to now, no value has been proposed for 6,  but 
many authors have affirmed that 6 is very small (Katsumata and Date 1969, Adam et a1 
1980b). Moreover the value obtained here for 6 is compatible with that obtained in our 
previous paper (Pl):  4.8 X lo8 Hz. 

The present value obtained for K,, -2.2 x 10’’ Hz, is compatible with that obtained 
previously, -3.5 X lo1’ Hz (Pl) .  However, the K, values of 2.2 and 3.5 X lo1’ Hz lead 

F,, - F , ~  = $&(e - 8,)’ - 0.1576 COS 2 q  - &(e)  > 0. 
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to values close to 0.09R and 0.1SR respectively for L ,  the transition latent heat. Since 
the experimental value proposed for L is -0.013R (White and Staveley 1982), it seems 
preferable to use the value 2.2 x 10l1 Hz for K,. We must note that the latent heat 
experimental value is probably not very accurate. 

3.4. HX-AFphaSe transition at 4.2 K 

The magnetic field value h which induces an HX-AF phase transition at 4.2 K approxi- 
mately verifies the relation 

with h = 2.74 i. 0.02 X lo4  G ,  the angle v having the same value as in the equations 
(15). Using the values obtained for 6  COS^^, U, (4.2) and Uz (4.2) we deduce a mean 
value for KO q2/2  close to 4.9 x lo9 Hz. 

Replacing q by qo, we obtain a mean value for KO close to 3.4 X loL1 Hz. This value 
is fifteen times lower than the value 5.3 X 1O1’Hz deduced from experimental data 
obtained in zero applied field. We consider that this discrepancy between both values 
of KO is due to the fact that we do not take into account the strain tensor created by the 
applied magnetic field. In the HX-AF transition at 4.2 K,  the applied magnetic field is big 
(2.74 T )  and the strains created by this field cannot be neglected. We think that these 
strains modify the value of the helimagnetic angle q in the same way that the application 
of a hydrostatic pressure reduces the value of this angle (Day and Vettier 1981). If we 
take the value -53 x 1011 Hz for K O  obtained in zero applied field, we deduce from the 
result Hoq2 - 49.4 x lo8 Hz, the value 9.3 X for the parameter q2/2 in a 2.74 T 
applied field. Comparing this value to the value q$/2  - 0.01439, we conclude that the 
relative variation of the parameters q as a function of the applied magnetic field is 
A q / q  - - 1.7 lo-* kG-’ at 4.2 K. This prediction could easily be tested by experiment. 

i K 0 q 2  - 0.256 COS 2 v  - Ud(4.2) - U,(4.2)h2 = 0 

4. Conclusion 

In this article, using a model described in our previous paper, we have interpreted the 
experimental data obtained in NiBr2 concerning the variation of the AF-HX phase 
transition temperature as a function of an applied magnetic field. We have shown that 
the transition temperature value 23.8 ? 0.5 K obtained by extrapolation of the AF-HX 
transition line to zero field does not give the real zero applied field AF-HX transition 
temperature (Ti, = 22.8 K), but rather it corresponds to T,, the threshold temperature 
value of our model. Moreover this study allows us to confirm the values of some model 
parameters. 

Only the HX-AF phase transition observed at 4.2 Kin the presence of a 2.74 T applied 
magnetic field is not quantitatively interpreted by our model. However, we think that 
this is due to the fact that we have neglected the strains created by the field. We are 
presently examining this problem. 

We believe that some experimental studies, done in the presence of a magnetic field 
applied within the spin rotating plane, can give interesting new results. For example: (i) 
at 4.2 K we predict a reduction of the order of 2% per kG for the helimagnetic angle; 
(ii) near 22.8 K a study of the AF-HX phase transition as a function of the magnetic field 
direction will provide a direct determination of the in-plane anisotropy. 
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